Annals of Applied Biology (2002) 140, 37-52
B.A. Coutts and R.A.C. Jones (2002)
Temporal dynamics of spread of four viruses within mixed species perennial pastures
Annals of Applied Biology 140 (1), 37-52
Abstract: Six mixed species, perennial pastures at two locations, A (four pastures) and B (two pastures), were sampled at regular intervals over periods of 10 to 22 months. The predominant plant species present were white clover (Trifolium repens), perennial ryegrass (Lolium perenne) and kikuyu grass (Pennisetum clandestinum). To determine the extent to which incidences of viruses transmitted in different ways change in the same pastures over time, samples of each plant species were taken at random on every visit and tested for virus presence. To help identify factors that might explain changes in virus incidence, records were also made of aphid presence, pasture management practices, grazing regimes, sward height and the relative proportions of different plant species within the swards. Samples of white clover were tested for presence of Alfalfa mosaic virus (AMV) and White clover mosaic virus (WCMV), ryegrass for Barley yellow dwarf virus (BYDV) and Ryegrass mosaic virus (RyMV), and kikuyu grass for BYDV and potyvirus infection. AMV and WCMV were detected in white clover, and BYDV and RyMV in ryegrass at both locations but often with wide incidence fluctuations for the individual viruses. AMV incidences in white clover ranged from 0% to 19% at A, and from 27% to 100% at B. WCMV incidences in white clover fluctuated between 9% and 46% at B, but never exceeded 1% at A. RyMV incidences in ryegrass fluctuated between 3% and 34% at A, and 19% and 73% at B. BYDV incidences in ryegrass ranged from 0% to 6% at A and 4% to 17% at B. In kikuyu grass, an unknown potyvirus and BYDV were detected twice (1% incidence) and once (4% incidence) respectively at B, and the unknown potyvirus only once (2% infection) at A. During repeated trapping of aphids in four pastures (two each at A and B), numbers of aphids caught varied widely between trapping dates and between individual pastures on the same trapping date. The species caught were Acyrthosiphon kondoi, A. pisum, Aphis craccivora, Rhopalosiphum padi and Therioaphis trifolii. Except in summer, when only T. trifolii was caught, A. craccivora was the most abundant. The trends in incidence for each virus within each pasture were compared with those from the other pastures sampled over identical periods to determine whether there was any commonality. For RyM V in ryegrass, overall incidence trends within the different pastures at both locations resembled each other during the same sampling periods. Within pastures at the same location there was commonality in incidence trends for RyMV and BYDV in ryegrass, but with AMV in white clover periods of similarity were rare even when pastures were adjacent and managed identically. Unravelling the individual effects of alterations in season, vector numbers, mowing, intermittent heavy grazing and pasture species composition on virus incidence proved difficult due to complex interactions between these and other factors influencing new spread or declining virus occurrence.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Link to article at publishers website
Database assignments for author(s): Brenda A. Coutts, Roger A.C. Jones
Research topic(s) for pests/diseases/weeds:
population dynamics/ epidemiology
environment - cropping system/rotation
Pest and/or beneficial records:
Beneficial | Pest/Disease/Weed | Crop/Product | Country | Quarant.
|
---|---|---|---|---|
Acyrthosiphon pisum | ||||
Barley yellow dwarf viruses | Lolium (crop) | |||
Aphis craccivora | ||||
Rhopalosiphum padi | ||||
Acyrthosiphon kondoi | ||||
Therioaphis trifolii | ||||
Alfalfa mosaic virus | Clover (Trifolium) | |||
Ryegrass mosaic virus | Lolium (crop) | |||
White clover mosaic virus | Clover (Trifolium) |