Pest Management Science (2018) 74, 17-21
Jonathan Gressel and Guy Polturak (2018)
Suppressing aflatoxin biosynthesis is not a breakthrough if not useful
Pest Management Science 74 (1), 17-21
Abstract: Liver-affecting, carcinogenic aflatoxins produced by Aspergillus spp. are a major problem, especially in the humid developing world where storage conditions are often optimal for the fungi. Peanuts and maize have been transformed with RNAi constructs targeting Aspergillus flavus polyketide-synthase, an early key enzyme in aflatoxin biosynthesis. Aflatoxin biosynthesis was suppressed in developing immature grain, less so in late maturing grain, and it is doubtful that the technology will be effective in near dry mature grain. The infected grain was still mouldy. As Aspergillus that infects grain preharvest can continue to grow and produce aflatoxin in poorly stored grain, and grain storage insects vector further infections, this technology seems to have little potential utility in the humid tropics. The biotechnological approaches of RNAi directly targeting Aspergillus, coupled with transgenic insecticidal proteins should be far more effective. These biotechnological approaches can be used in tandem with the RNAi against polyketide-synthase, as well as with irradiation, biocontrol and better grain drying and hermetic dry storage in a controlled atmosphere.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Link to article at publishers website
Database assignments for author(s): Jonathan Gressel
Research topic(s) for pests/diseases/weeds:
resistance/tolerance/defence of host
Pest and/or beneficial records:
Beneficial | Pest/Disease/Weed | Crop/Product | Country | Quarant.
|
---|---|---|---|---|
Aspergillus flavus (plant/storage disease) | Groundnut/peanut (Arachis hypogaea) |