Insects (2020) 11 (12 - 842)

From Pestinfo-Wiki
Jump to: navigation, search

Wendy G. Marchant, Saioa Legarrea, John R. Smeda, Martha A. Mutschler and Rajagopalbabu Srinivasan (2020)
Evaluating acylsugars-mediated resistance in tomato against Bemisia tabaci and transmission of Tomato yellow leaf curl virus
Insects 11 (12 - 842)
Abstract: The sweetpotato whitefly, Bemisia tabaci, is a major pest of cultivated tomato. Whitefly feeding-related injuries and transmission of viruses including tomato yellow leaf curl virus (TYLCV) cause serious losses. Management strategy includes planting resistant cultivars/hybrids. However, TYLCV resistance is incomplete and whiteflies on TYLCV-resistant cultivars/hybrids are managed by insecticides. Acylsugars'-mediated resistance against whiteflies has been introgressed from wild solanums into cultivated tomato. This study evaluated acylsugar-producing tomato lines with quantitative trait loci (QTL) containing introgressions from Solanum pennellii LA716, known to alter acylsugars' levels or chemistry. Evaluated acylsugar-producing lines were the benchmark line CU071026, QTL6/CU071026—a CU071026 sister line with QTL6, and three other CU071026 sister lines with varying QTLs—FA2/CU71026, FA7/CU071026, and FA2/FA7/CU071026. Non-acylsugar tomato hybrid Florida 47 (FL47) was also evaluated. Acylsugars' amounts in FA7/CU071026 and FA2/FA7/CU071026 were 1.4 to 2.2 times greater than in other acylsugar-producing lines. Short chain fatty acid, i-C5, was dominant in all acylsugar-producing lines. Long chain fatty acids, n-C10 and n-C12, were more abundant in FA7/CU071026 and FA2/FA7/CU071026 than in other acylsugar-producing lines. Whiteflies preferentially settled on non-acylsugar hybrid FL47 leaves over three out of five acylsugar-producing lines, and whiteflies settled 5 to 85 times more on abaxial than adaxial leaf surface of FL47 than on acylsugar-producing lines. Whiteflies' survival was 1.5 to 1.9 times lower on acylsugar-producing lines than in FL47. Nevertheless, whiteflies' developmental time was up to 12.5% shorter on acylsugar-producing lines than on FL47. TYLCV infection following whitefly-mediated transmission to acylsugar-producing lines was 1.4 to 2.8 times lower than FL47, and TYLCV acquisition by whiteflies from acylsugar-producing lines was up to 77% lower than from FL47. However, TYLCV accumulation in acylsugar-producing lines following infection and TYLCV loads in whiteflies upon acquisition from acylsugar-producing lines were not different from FL47. Combining TYLCV resistance with acylsugars'-mediated whitefly resistance in cultivated tomato could substantially benefit whiteflies and TYLCV management.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Full text of article
Database assignments for author(s): Rajagopalbabu Srinivasan

Research topic(s) for pests/diseases/weeds:
resistance/tolerance/defence of host
transmission/dispersal of plant diseases


Pest and/or beneficial records:

Beneficial Pest/Disease/Weed Crop/Product Country Quarant.


Bemisia tabaci biotype MEAM1 Tomato (Solanum lycopersicum) U.S.A. (SE)
Tomato yellow leaf curl virus Tomato (Solanum lycopersicum) U.S.A. (SE)