Entomologia Experimentalis et Applicata (2014) 151, 259-269

From Pestinfo-Wiki
Jump to: navigation, search

Xiao-Ling Tan and Tong-Xian Liu (2014)
Aphid-induced plant volatiles affect the attractiveness of tomato plants to Bemisia tabaci and associated natural enemies
Entomologia Experimentalis et Applicata 151 (3), 259-269
Abstract: An in-depth understanding of plant-mediated interactions between herbivores and their natural enemies is essential in community ecology and co-evolution, and for developing sustainable pest management strategies. The influence of Myzus persicae (Sulzer) (Hemiptera: Aphididae)-induced tomato plant [Solanum lycopersicum L. (Solanaceae)] volatile compounds on the olfactory responses of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), three predator species [Coccinella septempunctata L., Propylea japonica (Mulstant) (both Coleoptera: Coccinellidae), and Orius sauteri (Poppius) (Hemiptera: Anthocoridae)], two whitefly parasitoid species [Encarsia formosa (Gahan) and Encarsia sophia (Girault and Dodd) (Hymenoptera: Aphelinidae)], and one aphid parasitoid species [Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae)] were examined in two-choice tests using a four-arm olfactometer. Tomato plants were experimentally manipulated for aphid density, duration of aphid feeding, and interval between aphid removal and the behavioral test. We also compared the systemic effects of aphid feeding on the olfactory behavior of whiteflies and natural enemies according to three relative leaf positions: the aphid-infested leaf itself and two adjacent leaves (above and below). Bemisia tabaci were deterred by the odors of the leaves infested with aphids in all treatments. All six natural enemies were attracted to the leaves infested with aphids. Bemisia tabaci deterrence by volatiles was greater for leaves at the highest aphid density, and with increasing duration of exposure to aphid feeding. In contrast, the attraction to leaves was greater for the three parasitoids than for the three predators both with increasing aphid density and increasing duration of plant exposure to aphids. There was no significant influence of leaf position on preference of B. tabaci, the two species of lady beetles, and the aphid parasitoid. The two Encarsia species were attracted to the leaf above the aphid-infested leaves, indicating that systemic volatiles were released by adjacent leaves. On the other hand, O. sauteri was only attracted by the aphid-infested leaf itself. Our results showed that M. persicae-infested host plants emitted volatiles that could inhibit the colonization by B. tabaci and also attract natural enemies of both aphids and whiteflies. The results of this study may need to be considered further for optimizing pest management methods.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Link to article at publishers website
Database assignments for author(s): Tong Xian Liu

Research topic(s) for pests/diseases/weeds:
environment - cropping system/rotation
biocontrol - natural enemies
Research topic(s) for beneficials or antagonists:
environment/habitat manipulation


Pest and/or beneficial records:

Beneficial Pest/Disease/Weed Crop/Product Country Quarant.


Myzus persicae Tomato (Solanum lycopersicum)
Bemisia tabaci Tomato (Solanum lycopersicum)
Coccinella septempunctata (predator)
Encarsia formosa (parasitoid)
Encarsia sophia (parasitoid)
Propylea japonica (predator)
Aphidius gifuensis (parasitoid)
Orius sauteri (predator)