Phytopathology (2016) 106, 244-253
From Pestinfo-Wiki
![]() | Selected publication you are invited to contribute to the discussion section (above tab) |
A physically based theoretical model of spore deposition for predicting spread of plant diseases
Phytopathology 106 (3), 244-253
Abstract: A physically based theory for predicting spore deposition downwind from an area source of inoculum is presented. The modeling framework is based on theories of turbulence dispersion in the atmospheric boundary layer and applies only to spores that escape from plant canopies. A "disease resistance" coefficient is introduced to convert the theoretical spore deposition model into a simple tool for predicting disease spread at the field scale. Results from the model agree well with published measurements of Uromyces phaseoli spore deposition and measurements of wheat leaf rust disease severity. The theoretical model has the advantage over empirical models in that it can be used to assess the influence of source distribution and geometry, spore characteristics, and meteorological conditions on spore deposition and disease spread. The modeling framework is refined to predict the detailed two-dimensional spatial pattern of disease spread from an infection focus. Accounting for the time variations of wind speed and direction in the refined modeling procedure improves predictions, especially near the inoculum source, and enables application of the theoretical modeling framework to field experiment design.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Link to article at publishers website
Database assignments for author(s): Scott A. Isard
Research topic(s) for pests/diseases/weeds:
population dynamics/ epidemiology
Pest and/or beneficial records:
Beneficial | Pest/Disease/Weed | Crop/Product | Country | Quarant. |
---|---|---|---|---|
Uromyces appendiculatus | ||||
Puccinia triticina | Wheat (Triticum) |