PLoS ONE (2017) 12 (11 - e0187788)

From Pestinfo-Wiki
Jump to: navigation, search
IPMimage1436029.jpgSelected publication
you are invited to contribute to
the discussion section (above tab)
Tiphaine Vidal, Pauline Lusley, Marc Leconte, Claude de Vallavieille-Pope, Laurent Huber and Sébastien Saint-Jean (2017)
Cultivar architecture modulates spore dispersal by rain splash: A new perspective to reduce disease progression in cultivar mixtures
PLoS ONE 12 (11 - e0187788)
Abstract: Cultivar mixtures can be used to improve the sustainability of disease management within farming systems by growing cultivars that differ in their disease resistance level in the same field. The impact of canopy aerial architecture on rain-splash dispersal could amplify disease reduction within mixtures. We designed a controlled conditions experiment to study single splash-dispersal events and their consequences for disease. We quantified this impact through the spore interception capacities of the component cultivars of a mixture. Two wheat cultivars, differing in their aerial architecture (mainly leaf area density) and resistance to Septoria tritici blotch, were used to constitute pure stands and mixtures with 75% of resistant plants that accounted for 80% of the canopy leaf area. Canopies composed of 3 rows of plants were exposed to standardized spore fluxes produced by splashing calibrated rain drops on a linear source of inoculum. Disease propagation was measured through spore fluxes and several disease indicators. Leaf susceptibility was higher for upper than for lower leaves. Dense canopies intercepted more spores and mainly limited horizontal spore transfer to the first two rows. The presence of the resistant and dense cultivar made the mixed canopy denser than the susceptible pure stand. No disease symptoms were observed on susceptible plants of the second and third rows in the cultivar mixture, suggesting that the number of spores intercepted by these plants was too low to cause disease symptoms. Both lesion area and disease conditional severity were significantly reduced on susceptible plants within mixtures on the first row beside the inoculum source. Those reductions on one single-splash dispersal event, should be amplified after several cycle over the full epidemic season. Control of splash-dispersed diseases within mixtures could therefore be improved by a careful choice of cultivars taking into consideration both resistance and architecture.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Full text of article


Database assignments for author(s): Claude de Vallavieille-Pope

Research topic(s) for pests/diseases/weeds:
environment - cropping system/rotation


Pest and/or beneficial records:

Beneficial Pest/Disease/Weed Crop/Product Country Quarant.
Zymoseptoria tritici Wheat (Triticum) France