PLoS Genetics (2015) 11 (4 - e1005124)
Zhaojiang Guo, Shi Kang, Defeng Chen, Qingjun Wu, Shaoli Wang, Wen Xie, Xun Zhu, Simon W. Baxter, Xuguo Zhou, Juan Luis Jurat-Fuentes and Youjun Zhang (2015)
MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth
PLoS Genetics 11 (4 - e1005124)
Abstract: Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Full text of article
Database assignments for author(s): Juan L. Jurat-Fuentes, Shaoli Wang, Qing Jun Wu, Xu-Guo Zhou
Research topic(s) for pests/diseases/weeds:
biocontrol - natural enemies
Research topic(s) for beneficials or antagonists:
resistance/tolerance/defence of host
Pest and/or beneficial records:
Beneficial | Pest/Disease/Weed | Crop/Product | Country | Quarant.
|
---|---|---|---|---|
Plutella xylostella | ||||
Bacillus thuringiensis Cry1A-toxin (entomopathogen) | Plutella xylostella |