Journal of Economic Entomology (2003) 96, 1872-1885

From Pestinfo-Wiki
Jump to: navigation, search

D.W. Onstad, D.W. Crowder, P.D. Mitchell, C.A. Guse, J.L. Spencer, E. Levine and M.E. Gray (2003)
Economics versus alleles: balancing integrated pest management and insect resistance management for rotation-resistant western corn rootworm (Coleoptera: Chrysomelidae)
Journal of Economic Entomology 96 (6), 1872-1885
Abstract: Western corn rootworm, Diabrotica virgifera virgifera LeConte, has overcome crop rotation in several areas of the central United States. We expanded a simple model of adult behavior and population genetics to explain how rotation resistance may have developed and to study ways to manage the western corn rootworm in a landscape of corn, soybean, and winter wheat where evolution of resistance may occur. We modeled six alternative management strategies over a 15-yr time horizon, as well as a strategy involving a 2-yr rotation of corn and soybean in 85% of the landscape, to investigate their effectiveness from both a biological and economic perspective. Generally, resistance to crop rotation evolves in fewer than 15 yr, and the rate of evolution increases as the level of rotated landscape (selection pressure) increases. When resistance is recessive, all six alternative strategies were effective at preventing evolution of rotation resistance. The two most successful strategies were the use of transgenic rotated corn in a 2-yr rotation and a 3-yr rotation of corn, soybean, and wheat with unattractive wheat (for oviposition) preceding corn. Results were most sensitive to increases in the initial allele frequency and modifications of the density-dependent survival function. Economically, three alternative strategies were robust solutions to the problem, if technology fees were not too high. Repellant soybean, attractive rotated corn, and transgenic rotated corn, all in 2-yr rotations, were economically valuable approaches. However, even the currently common 2-yr rotation was economical when resistance was recessive and the actual costs of resistance would not be paid until far in the future.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Full text of article
Database assignments for author(s): David W. Crowder, Paul D. Mitchell, Michael E. Gray

Research topic(s) for pests/diseases/weeds:
environment - cropping system/rotation
control - general


Pest and/or beneficial records:

Beneficial Pest/Disease/Weed Crop/Product Country Quarant.


Diabrotica virgifera Maize/corn (Zea mays)