Environmental Microbiology (2017) 19, 4256-4277
Justice Norvienyeku, Zhenhui Zhong, Lili Lin, Xie Dang, Meilian Chen, Xiaolian Lin, Honghong Zhang, Wilfred M. Anjago, Lianyu Lin, Waheed Abdul and Zonghua Wang (2017)
Methylmalonate-semialdehyde dehydrogenase mediated metabolite homeostasis essentially regulate conidiation, polarized germination and pathogenesis in Magnaporthe oryzae
Environmental Microbiology 19 (10), 4256-4277
Abstract: Plants generate multitude of aldehydes under abiotic and biotic stress conditions. Ample demonstrations have shown that rice-derived aldehydes enhance the resistance of rice against the rice-blast fungus Magnaporthe oryzae. However, how the fungal pathogen nullifies the inhibitory effects of host aldehydes to establish compatible interaction remains unknown. Here we identified and evaluated the in vivo transcriptional activities of M. oryzae aldehyde dehydrogenase (ALDH) genes. Transcriptional analysis of M. oryzae ALDH genes revealed that the acetylating enzyme Methylmalonate-Semialdehyde Dehydrogenase (MoMsdh/MoMmsdh) elevated activities during host invasion and colonization of the fungus. We further examined the pathophysiological importance of MoMSDH by deploying integrated functional genetics, and biochemical approaches. MoMSDH deletion mutant ΔMomsdh exhibited germination defect, hyper-branching of germ tube and failed to form appressoria on hydrophobic and hydrophilic surface. The MoMSDH disruption caused accumulation of small branch-chain amino acids, pyridoxine and AMP/cAMP in the ΔMomsdh mutant and altered Spitzenkörper organization in the conidia. We concluded that MoMSDH contribute significantly to the pathogenesis of M. oryzae by regulating the mobilization of Spitzenkörper during germ tube morphogenesis, appressoria formation by acting as metabolic switch regulating small branch-chain amino acids, inositol, pyridoxine and AMP/cAMP homeostasis.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Link to article at publishers website
Research topic(s) for pests/diseases/weeds:
general biology - morphology - evolution
molecular biology - genes
Pest and/or beneficial records:
Beneficial | Pest/Disease/Weed | Crop/Product | Country | Quarant.
|
---|---|---|---|---|
Pyricularia oryzae |