Bulletin of Entomological Research (2011) 101, 541-550

From Pestinfo-Wiki
Jump to: navigation, search

J.I. Cook, S. Majeed, R. Ignell, J.A. Pickett, M.A. Birkett and J.G. Logan (2011)
Enantiomeric selectivity in behavioural and electrophysiological responses of Aedes aegypti and Culex quinquefasciatus mosquitoes
Bulletin of Entomological Research 101 (5), 541-550
Abstract: 1-Octen-3-ol is a kairomone for many haematophagous insects including mosquitoes. Numerous studies have examined the effects of racemic 1-octen-3-ol; however, few studies have investigated the role of individual enantiomers in relation to mosquito attraction. In the present study, we investigated the behavioural and electrophysiological responses of two mosquito species, Aedes aegypti and Culex quinquefasciatus, to individual enantiomers and mixtures of 1-octen-3-ol, employing a laboratory Y-tube olfactometer and single sensillum recordings. The olfactory receptor neurons of both Ae. aegypti and Cx. quinquefasciatus had a significantly higher response to the (R)-1-octen-3-ol enantiomer compared to the (S)-1-octen-3-ol enantiomer at 10−9 g μl−1 to 10−6 g μl−1. Behaviourally, Ae. aegypti was more responsive to the (R)-1-octen-3-ol enantiomer, showing an increase in flight activity and relative attraction compared to Cx. quinquefasciatus. The (R)-1-octen-3-ol enantiomer caused an increase in activation for Cx. quinquefasciatus. However, the most notable effect was from an (R:S)-1-octen-3-ol mixture (84:16) that caused significantly more mosquitoes to sustain their flight and reach the capture chambers (demonstrated by a reduced non-sustained flight activity), suggesting that it may have a behaviourally excitatory effect. For Cx. quinquefasciatus, a reduced relative attraction response was also observed for all treatments containing the (R)-1-octen-3-ol enantiomer, either on its own or as part of a mixture, but not with the (S)-1-octen-3-ol enantiomer. This is the first time enantiomeric selectivity has been shown for Ae. aegypti using electrophysiology in vivo. The implications of these results for exploitation in mosquito traps are discussed.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Link to article at publishers website
Database assignments for author(s): Michael A. Birkett, John A. Pickett

Research topic(s) for pests/diseases/weeds:
general biology - morphology - evolution
pheromones/attractants/traps


Pest and/or beneficial records:

Beneficial Pest/Disease/Weed Crop/Product Country Quarant.


Culex quinquefasciatus
Aedes aegypti