BMC Plant Biology (2020) 20 (407) - Insights into the resistance

From Pestinfo-Wiki
Jump to: navigation, search

Harriet R. Benbow, Ciarán J. Brennan, Binbin Zhou, Thalia Christodoulou, Simon Berry, Cristobal Uauy, Ewen Mullins and Fiona M. Doohan (2020)
Insights into the resistance of a synthetically-derived wheat to Septoria tritici blotch disease: less is more
BMC Plant Biology 20 (407)
Abstract:
Background
Little is known about the initial, symptomless (latent) phase of the devastating wheat disease Septoria tritici blotch. However, speculations as to its impact on fungal success and disease severity in the field have suggested that a long latent phase is beneficial to the host and can reduce inoculum build up in the field over a growing season. The winter wheat cultivar Stigg is derived from a synthetic hexaploid wheat and contains introgressions from wild tetraploid wheat Triticum turgidum subsp. dicoccoides, which contribute to cv. Stigg's exceptional STB resistance, hallmarked by a long latent phase. We compared the early transcriptomic response to Zymoseptoria tritici of cv. Stigg to a susceptible wheat cultivar, to elucidate the mechanisms of and differences in pathogen recognition and disease response in these two hosts.
Results
The STB-susceptible cultivar Longbow responds to Z. tritici infection with a stress response, including activation of hormone-responsive transcription factors, post translational modifications, and response to oxidative stress. The activation of key genes associated with these pathways in cv. Longbow was independently observed in a second susceptible wheat cultivar based on an independent gene expression study. By comparison, cv. Stigg is apathetic in response to STB, and appears to fail to activate a range of defence pathways that cv. Longbow employs. Stigg also displays some evidence of sub-genome bias in its response to Z. tritici infection, whereas the susceptible cv. Longbow shows even distribution of Z. tritici responsive genes across the three wheat sub-genomes.
Conclusions
We identify a suite of disease response genes that are involved in early pathogen response in susceptible wheat cultivars that may ultimately lead to susceptibility. In comparison, we hypothesise that rather than an active defence response to stave off disease progression, cv. Stigg's defence strategy is molecular lethargy, or a lower-amplitude of pathogen recognition that may stem from cv. Stigg's wild wheat-derived ancestry. Overall, we present insights into cv. Stigg's exceptional resistance to STB, and present key biological processes for further characterisation in this pathosystem.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Full text of article
Database assignments for author(s): Ewen Mullins, Fiona M. Doohan

Research topic(s) for pests/diseases/weeds:
resistance/tolerance/defence of host


Pest and/or beneficial records:

Beneficial Pest/Disease/Weed Crop/Product Country Quarant.


Zymoseptoria tritici Wheat (Triticum)