Phytopathology (2011) 101, 912-922
Elaine A. Backus and David J.W. Morgan (2011)
Spatiotemporal colonization of Xylella fastidiosa in its vector supports the role of egestion in the inoculation mechanism of foregut-borne plant pathogens
Phytopathology 101 (8), 912-922
Abstract: The pathogen that causes Pierce's disease of grapevine, Xylella fastidiosa, is the only known bacterial, arthropod-transmitted plant pathogen that does not circulate in the vector's hemolymph. Instead, bacteria are foregut-borne, persistent in adult vectors but semipersistent in immatures (i.e., bacteria colonize cuticular surfaces of the anterior foregut, are retained for hours to days, but are lost during molting). Yet, exactly how a sharpshooter vector inoculates bacteria from foregut acquisition sites is unknown. The present study used confocal laser-scanning microscopy to identify locations in undissected, anterior foreguts of the glassy-winged sharpshooter colonized by green fluorescent protein-expressing X. fastidiosa. Spatial and temporal distributions of colonizing X. fastidiosa were examined daily over acquisition access periods of 1 to 6 days for both contaminated field-collected and clean laboratory-reared Homalodisca vitripennis. Results provide the first direct, empirical evidence that established populations of X. fastidiosa can disappear from vector foreguts over time. When combined with existing knowledge on behavior, physiology, and functional anatomy of sharpshooter feeding, present results support the idea that the disappearance is caused by outward fluid flow (egestion) not inward flow (ingestion) (i.e., swallowing). Thus, results support the hypothesis that egestion is a critical part of the X. fastidiosa inoculation mechanism. Furthermore, results suggest a cyclical, spatiotemporal pattern of microbial colonization, disappearance, and recolonization in the precibarium. Colonization patterns also support two types of egestion, termed rinsing and discharging egestion herein. Finally, comparison of acquisition results for field-collected versus laboratory-reared sharpshooters suggest that there may be competitive binding for optimum acquisition sites in the foregut. Therefore, successful inoculation of X. fastidiosa may depend, in large part, on vector load in the precibarium.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Link to article at publishers website
Database assignments for author(s): Elaine A. Backus
Research topic(s) for pests/diseases/weeds:
transmission/dispersal of plant diseases
Pest and/or beneficial records:
Beneficial | Pest/Disease/Weed | Crop/Product | Country | Quarant.
|
---|---|---|---|---|
Xylella fastidiosa | ||||
Homalodisca vitripennis |