Plant Pathology (2018) 67, 1647-1668

From Pestinfo-Wiki
Jump to: navigation, search
Protein pattern analyzer.jpgSelected publication
you are invited to contribute to
the discussion section (above tab)
A.P. Martínez-González, H.D. Ardila, S.T. Martínez-Peralta, L.M. Melgarejo-Muñoz, M.A. Castillejo-Sánchez and J.V. Jorrín-Novo (2018)
What proteomic analysis of the apoplast tells us about plant–pathogen interactions
Plant Pathology 67 (8), 1647-1668
Abstract: Plant pathogens have developed different strategies during their evolution to infect and colonize their hosts. In the same way, plants have evolved different mechanisms acting against potential pathogens trying to infect and colonize their tissues. Regulation of a wide variety of proteins is required in order to perceive the pathogen and to activate the plant defence mechanisms. The apoplast is the first compartment where these recognition phenomena occur in most plant–pathogen interactions, allowing the exchange of different molecules and facilitating inter- and intracellular communication in plant cells. Proteomic analysis of the apoplast in recent years has found the initial biochemical responses involved in pathogen recognition and early defence responses. However, this proteomic approach requires some specific experimental conditions to obtain an extract free of cytoplasmic proteins and nonprotein contaminants that affect the subsequent stages of separation and quantification. Obtaining the highest proportion of proteins from the apoplastic space in infected tissues requires different steps such as extraction of apoplastic washing fluids and preparation of total secreted proteins (protein precipitation, solubilization, separation and digestion). Protein identification using mass spectrometry techniques and bioinformatics tools identifying peptides for the extracellular exportation is required to confirm the apoplastic location. This review compiles the most commonly used techniques for proteomic studies, focusing on the early biochemical changes occurring in the apoplast of plants infected by a wide range of pathogens. The scope of this approach to discover the molecular mechanisms involved in the plant–pathogen interaction is discussed.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Link to article at publishers website


Research topic(s) for pests/diseases/weeds:
resistance/tolerance/defence of host


Pest and/or beneficial records:

Beneficial Pest/Disease/Weed Crop/Product Country Quarant.