Molecular Plant Pathology (2019) 20, 137-152
Sonja Warmerdam, Mark G. Sterken, Casper Van Schaik, Marian E.P. Oortwijn, Jose L. Lozano-Torres, Jaap Bakker, Aska Goverse and Geert Smant (2019)
Mediator of tolerance to abiotic stress ERF6 regulates susceptibility of Arabidopsis to Meloidogyne incognita
Molecular Plant Pathology 20 (1), 137-152
Abstract: Root-knot nematodes transform vascular host cells into permanent feeding structures to selectively withdraw their nutrients from host plants during the course of several weeks. The susceptibility of host plants to root-knot nematode infections is thought to be a complex trait involving many genetic loci. However, genome-wide association (GWA) analysis has so far revealed only four quantitative trait loci (QTLs) linked to the reproductive success of the root-knot nematode Meloidogyne incognita in Arabidopsis thaliana, which suggests that the genetic architecture underlying host susceptibility could be much simpler than previously thought. Here, we report that, by using a relaxed stringency approach in a GWA analysis, we could identify 15 additional loci linked to quantitative variation in the reproductive success of M. incognita in Arabidopsis. To test the robustness of our analysis, we functionally characterized six genes located in a QTL with the lowest acceptable statistical support and smallest effect size. This led us to identify ETHYLENE RESPONSE FACTOR 6 (ERF6) as a novel susceptibility gene for M. incognita in Arabidopsis. ERF6 functions as a transcriptional activator and suppressor of genes in response to various abiotic stresses independent of ethylene signalling. However, whole-transcriptome analysis of nematode-infected roots of the Arabidopsis erf6-1 knockout mutant line showed that allelic variation at this locus may regulate the conversion of aminocyclopropane-1-carboxylate (ACC) into ethylene by altering the expression of 1-aminocyclopropane-1-carboxylate oxidase 3 (ACO3). Our data further suggest that tolerance to abiotic stress mediated by ERF6 forms a novel layer of control in the susceptibility of Arabidopsis to M. incognita.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Link to article at publishers website
Database assignments for author(s): Aska Goverse
Research topic(s) for pests/diseases/weeds:
molecular biology - genes
resistance/tolerance/defence of host
Pest and/or beneficial records:
Beneficial | Pest/Disease/Weed | Crop/Product | Country | Quarant.
|
---|---|---|---|---|
Meloidogyne incognita |