Molecular Plant-Microbe Interactions (2007) 20, 659-670

From Pestinfo-Wiki
Jump to: navigation, search

Andrew J. Love, Valérie Laval, Chiara Geri, Janet Laird, A. Deri Tomos, Mark A. Hooks and Joel J. Milner (2007)
Components of Arabidopsis defense- and ethylene-signaling pathways regulate susceptibility to Cauliflower mosaic virus by restricting long-distance movement
Molecular Plant-Microbe Interactions 20 (6), 659-670
Abstract: We analyzed the susceptibility of Arabidopsis mutants with defects in salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signaling to infection by Cauliflower mosaic virus (CaMV). Mutants cpr1-1 and cpr5-2, in which SA-dependent defense signaling is activated constitutively, were substantially more resistant than the wild type to systemic infection, implicating SA signaling in defense against CaMV. However, SA-deficient NahG, sid2-2, eds5-1, and pad4-1 did not show enhanced susceptibility. A cpr5 eds5 double mutant also was resistant, suggesting that resistance in cpr5 may function partially independently of SA. Treatment of cpr5 and cpr5 eds5, but not cpr1, with salicyl-hydroxamic acid, an inhibitor of alternative oxidase, partially restored susceptibility to wild-type levels. Mutants etr1-1, etr1-3, and ein2-1, and two mutants with lesions in ET/JA-mediated defense, eds4 and eds8, also showed reduced virus susceptibility, demonstrating that ET-dependent responses also play a role in susceptibility. We used a green fluorescent protein (GFP)-expressing CaMV recombinant to monitor virus movement. In mutants with reduced susceptibility, cpr1-1, cpr5-2, and etr1-1, CaMV-GFP formed local lesions similar to the wild type, but systemic spread was almost completely absent in cpr1 and cpr5 and was substantially reduced in etr1-1. Thus, mutations with enhanced systemic acquired resistance or compromised ET signaling show diminished long-distance virus movement.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Link to article at publishers website


Research topic(s) for pests/diseases/weeds:
molecular biology - genes
resistance/tolerance/defence of host


Pest and/or beneficial records:

Beneficial Pest/Disease/Weed Crop/Product Country Quarant.


Caulimovirus tessellobrassicae