Journal of Chemical Ecology (2016) 42, 806-813

From Pestinfo-Wiki
Jump to: navigation, search

Priscila Strapasson, Delia M. Pinto-Zevallos, Sandra M. Da Silva Gomes and Paulo H.G. Zarbin (2016)
Volatile organic compounds induced by herbivory of the soybean looper Chrysodeixis includens in transgenic glyphosate-resistant soybean and the behavioral effect on the parasitoid, Meteorus rubens
Journal of Chemical Ecology 42 (8), 806-813
Abstract: Transgenic soybean plants (RR) engineered to express resistance to glyphosate harbor a variant of the enzyme EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) involved in the shikimic acid pathway, the biosynthetic route of three aromatic amino acids: phenylalanine, tyrosine, and tryptophan. The insertion of the variant enzyme CP4 EPSPS confers resistance to glyphosate. During the process of genetic engineering, unintended secondary effects are likely to occur. In the present study, we quantified volatile organic compounds (VOCs) emitted constitutively or induced in response to herbivory by the soybean looper Chrysodeixis includens in transgenic soybean and its isogenic (untransformed) line. Since herbivore-induced plant volatiles (HIPVs) are known to play a role in the recruitment of natural enemies, we assessed whether changes in VOC profiles alter the foraging behavior of the generalist endoparasitic larval parasitoid, Meteorus rubens in the transgenic line. Additionally, we assessed whether there was a difference in plant quality by measuring the weight gain of the soybean looper. In response to herbivory, several VOCs were induced in both the conventional and the transgenic line; however, larger quantities of a few compounds were emitted by transgenic plants. Meteorus rubens females were able to discriminate between the odors of undamaged and C. includens-damaged plants in both lines, but preferred the odors emitted by herbivore-damaged transgenic plants over those emitted by herbivore-damaged conventional soybean plants. No differences were observed in the weight gain of the soybean looper. Our results suggest that VOC-mediated tritrophic interactions in this model system are not negatively affected. However, as the preference of the wasps shifted towards damaged transgenic plants, the results also suggest that genetic modification affects that tritrophic interactions in multiple ways in this model system.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Link to article at publishers website
Database assignments for author(s): Paulo Henrique Gorgatti Zarbin

Research topic(s) for pests/diseases/weeds:
biocontrol - natural enemies
Research topic(s) for beneficials or antagonists:
environment/habitat manipulation


Pest and/or beneficial records:

Beneficial Pest/Disease/Weed Crop/Product Country Quarant.


Chrysodeixis includens Soybean (Glycine max)
Meteorus rubens (parasitoid) Chrysodeixis includens Soybean (Glycine max)