BMC Genomics (2022) 23 (470) - Cultivar-specific markers,

From Pestinfo-Wiki
Jump to: navigation, search

Bo-Han Hou, Yi-Heng Tsai, Ming-Hau Chiang, Shu-Ming Tsao, Shih-Hung Huang, Chih-Ping Chao and Ho-Ming Chen (2022)
Cultivar-specific markers, mutations, and chimerisim of Cavendish banana somaclonal variants resistant to Fusarium oxysporum f. sp. cubense tropical race 4
BMC Genomics 23 (470)
Abstract:
Background
The selection of tissue culture–derived somaclonal variants of Giant Cavendish banana (Musa spp., Cavendish sub-group AAA) by the Taiwan Banana Research Institute (TBRI) has resulted in several cultivars resistant to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), a destructive fungus threatening global banana production. However, the mutations in these somaclonal variants have not yet been determined. We performed an RNA-sequencing (RNA-seq) analysis of three TBRI Foc TR4–resistant cultivars: 'Tai-Chiao No. 5' (TC5), 'Tai-Chiao No. 7' (TC7), and 'Formosana' (FM), as well as their susceptible progenitor 'Pei-Chiao' (PC), to investigate the sequence variations among them and develop cultivar-specific markers.
Results
A group of single-nucleotide variants (SNVs) specific to one cultivar were identified from the analysis of RNA-seq data and validated using Sanger sequencing from genomic DNA. Several SNVs were further converted into cleaved amplified polymorphic sequence (CAPS) markers or derived CAPS markers that could identify the three Foc TR4–resistant cultivars among 6 local and 5 international Cavendish cultivars. Compared with PC, the three resistant cultivars showed a loss or alteration of heterozygosity in some chromosomal regions, which appears to be a consequence of single-copy chromosomal deletions. Notably, TC7 and FM shared a common deletion region on chromosome 5; however, different TC7 tissues displayed varying degrees of allele ratios in this region, suggesting the presence of chimerism in TC7.
Conclusions
This work demonstrates that reliable SNV markers of tissue culture–derived and propagated banana cultivars with a triploid genome can be developed through RNA-seq data analysis. Moreover, the analysis of sequence heterozygosity can uncover chromosomal deletions and chimerism in banana somaclonal variants. The markers obtained from this study will assist with the identification of TBRI Cavendish somaclonal variants for the quality control of tissue culture propagation, and the protection of breeders' rights.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Full text of article


Research topic(s) for pests/diseases/weeds:
resistance/tolerance/defence of host


Pest and/or beneficial records:

Beneficial Pest/Disease/Weed Crop/Product Country Quarant.


Fusarium odoratissimum Banana/plantain (Musa) Taiwan