Plant Pathology (2019) 68, 229-238

From Pestinfo-Wiki
Jump to: navigation, search
People icon1.svgSelected publication
of interest to a wider audience. We would welcome
contributions to the Discussion section (above tab) of this article.
Remember to log in or register (top right corner) before editing pages.
L. Chalupowicz, A. Dombrovsky, V. Gaba, N. Luria, M. Reuven, A. Beerman, O. Lachman, O. Dror, G. Nissan and S. Manulis-Sasson (2019)
Diagnosis of plant diseases using the Nanopore sequencing platform
Plant Pathology 68 (2), 229-238
Abstract: Reliable detection and identification of plant pathogens are essential for disease control strategies. Diagnostic methods commonly used to detect plant pathogens have limitations such as requirement of prior knowledge of the genome sequence, low sensitivity and a restricted ability to detect several pathogens simultaneously. The development of advanced DNA sequencing technologies has enabled determination of total nucleic acid content in biological samples. The possibility of using the single-molecule sequencing platform of Oxford Nanopore as a general method for diagnosis of plant diseases was examined. It was tested by sequencing DNA or RNA isolated from tissues with symptoms from plants of several families inoculated with known pathogens (e.g. bacteria, viruses, fungi, phytoplasma). Additionally, samples of groups of 200 seeds containing one infected seed of each of two or three pathogens, as well as samples with symptoms but unidentified pathogens were tested. Sequencing results were analysed with Nanopore data analysis tools. In all the inoculated plants, pathogens were identified in real time within 1–2 h of running the Nanopore sequencer and were classified to the species or genus level. DNA sequencing or direct RNA sequencing of samples with unidentified disease agents were validated by conventional diagnostic procedures (e.g. PCR, ELISA, Koch test), which supported the results obtained by Nanopore sequencing. The advantages of this technology include: long read lengths, fast run times, portability, low cost and the possibility of use in every laboratory. This study indicates that adoption of the Nanopore platform will be greatly advantageous for routine laboratory diagnosis.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Link to article at publishers website


Database assignments for author(s): Aviv Dombrovsky, Victor Gaba, Shulamit Manulis-Sasson

Research topic(s) for pests/diseases/weeds:
identification/taxonomy
surveys/sampling/distribution


Pest and/or beneficial records:

Beneficial Pest/Disease/Weed Crop/Product Country Quarant.