Molecular Plant Pathology (2018) 19, 2516-2523

From Pestinfo-Wiki
Jump to: navigation, search
People icon1.svgSelected publication
of interest to a wider audience. We would welcome
contributions to the Discussion section (above tab) of this article.
Remember to log in or register (top right corner) before editing pages.
Manon M.S. Richard, Ariane Gratias, Blake C. Meyers and Valérie Geffroy (2018)
Molecular mechanisms that limit the costs of NLR-mediated resistance in plants
Molecular Plant Pathology 19 (11), 2516-2523
Abstract: Crop diseases cause significant yield losses, and the use of resistant cultivars can effectively mitigate these losses and control many plant diseases. Most plant resistance (R) genes encode immune receptors composed of nucleotide-binding and leucine-rich repeat (NLR) domains. These proteins mediate the specific recognition of pathogen avirulence effectors to induce defence responses. However, NLR-triggered immunity can be associated with a reduction in growth and yield, so-called 'fitness costs'. Recent data have shown that plants use an elaborate interplay of different mechanisms to control NLR gene transcript levels, as well as NLR protein abundance and activity, to avoid the associated cost of resistance in the absence of a pathogen. In this review, we discuss the different levels of NLR regulation (transcriptional, post-transcriptional and at the protein level). We address the apparent need for plants to maintain diverse modes of regulation. A recent model suggesting an equilibrium 'ON/OFF state' of NLR proteins, in the absence of a pathogen, provides the context for our discussion.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Link to article at publishers website

Research topic(s) for pests/diseases/weeds:
resistance/tolerance/defence of host

Pest and/or beneficial records:

Beneficial Pest/Disease/Weed Crop/Product Country Quarant.