Molecular Plant-Microbe Interactions (2018) 31, 1048-1059

From Pestinfo-Wiki
Jump to: navigation, search
People icon1.svgSelected publication
of interest to a wider audience. We would welcome
contributions to the Discussion section (above tab) of this article.
Remember to log in or register (top right corner) before editing pages.
Eder Alves Barbosa, Mauro Ferreira Bonfim Jr., Carlos Bloch Jr., Gilbert Engler, Thales Rocha and Janice de Almeida Engler (2018)
Imaging mass spectrometry of endogenous polypeptides and secondary metabolites from galls induced by root-knot nematodes in tomato roots
Molecular Plant-Microbe Interactions 31 (10), 1048-1059
Abstract: Nematodes are devastating pests that infect most cultivated plant species and cause considerable agricultural losses worldwide. The understanding of metabolic adjustments induced during plant–nematode interaction is crucial to generate resistant plants or to select more efficient molecules to fight against this pest. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been used herein for in situ detection and mapping endogenous polypeptides and secondary metabolites from nematode-induced gall tissue. One of the major critical features of this technique is sample preparation; mainly, the generation of intact sections of plant cells with their rigid cell walls and vacuolated cytoplasm. Our experimental settings allowed us to obtain sections without contamination of exogenous ions or diffusion of molecules and to map the differential presence of low and high molecular weight ions in uninfected roots compared with nematode-induced galls. We predict the presence of lipids in both uninfected roots and galls, which was validated by MALDI time-of-flight tandem mass spectrometry and high-resolution mass spectrometry analysis of lipid extracts. Based on the isotopic ion distribution profile, both esters and glycerophospholipids were predicted compounds and may be playing an important role in gall development. Our results indicate that the MALDI-MSI technology is a promising tool to identify secondary metabolites as well as peptides and proteins in complex plant tissues like galls to decipher molecular processes responsible for infection and maintenance of these feeding sites during nematode parasitism.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Link to article at publishers website

Research topic(s) for pests/diseases/weeds:
resistance/tolerance/defence of host
general biology - morphology - evolution

Pest and/or beneficial records:

Beneficial Pest/Disease/Weed Crop/Product Country Quarant.