Applied and Environmental Microbiology (2022) 88 (13 - e00529-22)
From Pestinfo-Wiki
![]() | Selected publication you are invited to contribute to the discussion section (above tab) |
Infection dynamics of cotransmitted reproductive symbionts are mediated by sex, tissue, and development
Applied and Environmental Microbiology 88 (13 - e00529-22)
Abstract: One of the most prevalent intracellular infections on earth is with Wolbachia, a bacterium in the Rickettsiales that infects a range of insects, crustaceans, chelicerates, and nematodes. Wolbachia is maternally transmitted to offspring and has profound effects on the reproduction and physiology of its hosts, which can result in reproductive isolation, altered vectorial capacity, mitochondrial sweeps, and even host speciation. Some populations stably harbor multiple Wolbachia strains, which can further contribute to reproductive isolation and altered host physiology. However, almost nothing is known about the requirements for multiple intracellular microbes to be stably maintained across generations while they likely compete for space and resources. Here, we use a coinfection of two Wolbachia strains ("wHa" and "wNo") in Drosophila simulans to define the infection and transmission dynamics of an evolutionarily stable double infection. We find that a combination of sex, tissue, and host development contributes to the infection dynamics of the two microbes and that these infections exhibit a degree of niche partitioning across host tissues. wHa is present at a significantly higher titer than wNo in most tissues and developmental stages, but wNo is uniquely dominant in ovaries. Unexpectedly, the ratio of wHa to wNo in embryos does not reflect those observed in the ovaries, indicative of strain-specific transmission dynamics. Understanding how Wolbachia strains interact to establish and maintain stable infections has important implications for the development and effective implementation of Wolbachia-based vector biocontrol strategies, as well as more broadly defining how cooperation and conflict shape intracellular communities.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
(original language: English)
Full text of article
Research topic(s) for pests/diseases/weeds:
biocontrol - natural enemies
Research topic(s) for beneficials or antagonists:
general biology - morphology - evolution
Pest and/or beneficial records:
Beneficial | Pest/Disease/Weed | Crop/Product | Country | Quarant. |
---|---|---|---|---|
Wolbachia (genus - entomopathogens) |