Applied and Environmental Microbiology (2015) 81, 3492-3501

From Pestinfo-Wiki
Jump to: navigation, search
People icon1.svgSelected publication
of interest to a wider audience. We would welcome
contributions to the Discussion section (above tab) of this article.
Remember to log in or register (top right corner) before editing pages.
Jassy Drakulic, John Caulfield, Christine Woodcock, Stephen P.T. Jones, Robert Linforth, Toby J.A. Bruce and Rumiana V. Ray (2015)
Sharing a host plant (wheat [Triticum aestivum]) increases the fitness of Fusarium graminearum and the severity of Fusarium head blight but reduces the fitness of grain aphids (Sitobion avenae)
Applied and Environmental Microbiology 81 (10), 3492-3501
Abstract: We hypothesized that interactions between fusarium head blight-causing pathogens and herbivores are likely to occur because they share wheat as a host plant. Our aim was to investigate the interactions between the grain aphid, Sitobion avenae, and Fusarium graminearum on wheat ears and the role that host volatile chemicals play in mediating interactions. Wheat ears were treated with aphids and F. graminearum inoculum, together or separately, and disease progress was monitored by visual assessment and by quantification of pathogen DNA and mycotoxins. Plants exposed to both aphids and F. graminearum inoculum showed accelerated disease progression, with a 2-fold increase in disease severity and 5-fold increase in mycotoxin accumulation over those of plants treated only with F. graminearum. Furthermore, the longer the period of aphid colonization of the host prior to inoculation with F. graminearum, the greater the amount of pathogen DNA that accumulated. Headspace samples of plant volatiles were collected for use in aphid olfactometer assays and were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC-coupled electroantennography. Disease-induced plant volatiles were repellent to aphids, and 2-pentadecanone was the key semiochemical underpinning the repellent effect. We measured aphid survival and fecundity on infected wheat ears and found that both were markedly reduced on infected ears. Thus, interactions between F. graminearum and grain aphids on wheat ears benefit the pathogen at the expense of the pest. Our findings have important consequences for disease epidemiology, because we show increased spread and development of host disease, together with greater disease severity and greater accumulation of pathogen DNA and mycotoxin, when aphids are present.
(The abstract is excluded from the Creative Commons licence and has been copied with permission by the publisher.)
Link to article at publishers website


Database assignments for author(s): Rumiana V. Ray, Toby J.A. Bruce

Research topic(s) for pests/diseases/weeds:
environment - cropping system/rotation


Pest and/or beneficial records:

Beneficial Pest/Disease/Weed Crop/Product Country Quarant.
Sitobion avenae Wheat (Triticum)
Fusarium graminearum Wheat (Triticum)